The humidity in the atmosphere plays a crucial role in a wide range of atmospheric processes determined by the water-vapor concentration in the air. The accuracy of weather forecasts is largely dictated by the humidity field measured at low atmospheric levels. At the near-surface level, the absolute humidity variations can be large due to the variability of land cover (LC). Cities are one of the primary LCs which have a substantial impact on the humidity field. Large urban areas are expanding, causing a significant change in the near-surface humidity field. Current measurement tools, however, do not satisfactorily assess the cities’ effects on the humidity field. This paper presents an innovative method for high-resolution humidity measurements based on the cellular network. Here, the humidity field around Tel Aviv was retrieved from the cellular network during the summer of 2017. The results show a well-noticed impact of the city and other LC types on the humidity field over the Tel Aviv metropolitan area. The method presented here can offer an improved description of the humidity field at the city-canopy level and therefore provide a better assessment of the urban/LC effects on the environment, atmospheric modeling, and particularly on clouds/rain development.

Rubin, Y.; Sohn, S.; Alpert, P. High-Resolution Humidity Observations Based on Commercial Microwave Links (CML) Data—Case of Tel Aviv Metropolitan Area. Remote Sens. 202315, 345.